Lirum

#1918 LX-101, a Novel, Clinical Stage, Payload-bearing Targeted Therapy Directed to the Insulin-like Growth Factor 1 Receptor (IGF-1R), Demonstrates Potent Preclinical Anti-Tumor Activity Against Multiple Cancer Types with Well-Established Ties to the IGF-1/IGF-1R Pathway M. HOBERMAN¹

BACKGROUND

- shortened survival.
- responses, but none were ultimately approved in an oncology setting.
- blockade via redundant signaling pathways and other escape mechanisms.

LX-101, A NOVEL APPROACH TO TARGETING IGF-1R

- autoimmune diseases
- increased number of MTX molecules in an effort to enhance potency
- Targeted delivery of MTX directly to the cells of interest designed for increased precision
- (IGFBPs) to optimize bioavailability

METHODS

- (PerkinElmer). Cisplatin was used as a positive control.

¹Lirum Therapeutics, New York, USA

mmary			
	Cell lines	Absolute IC ₅₀ (nM)	
	FaDu	9	
st	BT-20	17	
	RD-ES	10	
	CADO-ES1	14	
	A673	14	
	SK-ES-1	29	
l	SJCRH30 (alveolar)	23	
	143B	6	
	HOS	7	
	U2OS	32	
	SK-N-AS	16	
	IMR-32	20	
	SH-SY5Y	30	

CANCERS WITH TIES TO THE IGF-1 / IGF-1R PATHWAY

	Epigenetic and Genetic Alterations			
	IGF-1R and poor prognosis	EWSR1-FLI1		
	IGF-1R and short survival	PAX3/7-FKHR/FOXO1		
Т)	High IGF-1R in peds (WT)	NBF1-IGF1R		
	IGF-1R aggressive disease	SYT-SSX1/2		
	IGF-1R and poor outcomes			
	IGF-1R and poor prognosis			
	IGF-1R and poor outcomes	IGF-1R gene amplification		
r (DSRCT)	IGF-1R and upregulation	EWSR1-WT1		
	IGF-2 overexpression			
	IGF-2 overexpression	MYB-NF1B		
noma, HPV(-)	IGF-1R associated with poor outcomes, mortality and shortened survival			
g lung, breast, colorectal,	IGF-1R over-expression a	and		

poor outcome features

- LX-101, a clinical stage next-generation, targeted therapy directed to IGF-1R, was previously evaluated (as 765IGF-MTX) in Phase 1a trials of adult patients with advanced, pretreated cancers, where it was well-tolerated and
 - Neither a DLT nor an MTD were reached, leaving room for possible further dose escalation and schedule
 - Also, an enrichment strategy was not employed which presents the opportunity for a more focused tumor-
- Prior IGF-1R-targeting drug candidates were non-payload-bearing naked monoclonal antibodies or small molecule tyrosine kinase inhibitors, and thus may not have addressed redundant pathways and other escape mechanisms
- In contrast, LX-101, with its novel payload-bearing construction, could provide a more potent therapeutic approach to targeting IGF-1R-prominent cancers than has been employed in the past
- LX-101 demonstrated potent preclinical anti-tumor activity against cancer cells with well-established ties to the IGF-1R pathway, including those with oncogenic gene fusions and other alterations affecting the pathway.
- Given these encouraging data, new clinical trials with LX-101 are being planned in indications with strong ties to the IGF-1R pathway, focusing on cancers in Table 2 (above)

Andersson, Mattias K et al. "IGF2/IGF1R Signaling as a Therapeutic Target in MYB-Positive Adenoid Cystic Carcinomas and Other Fusion Gene-Driven Tumors." Cells vol. 8,8 913. 16 Aug. 2019, Hua, Hui et al. "Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy." Journal of hematology & oncology vol. 13,1 64. 3 Jun. 2020, Venepalli, Neeta K et al. "Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R." American journal of clinical oncology vol. 42,11 (2019), Chen, Helen X, and Elad Sharon. "IGF-1R as an anti-cancer target-trials and tribulations." Chinese journal of cancer vol. 32,5 (2013), Yuan, Jingsheng et al. "Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy." Oncology letters vol. 15,1 (2018), Larsson, O et al.