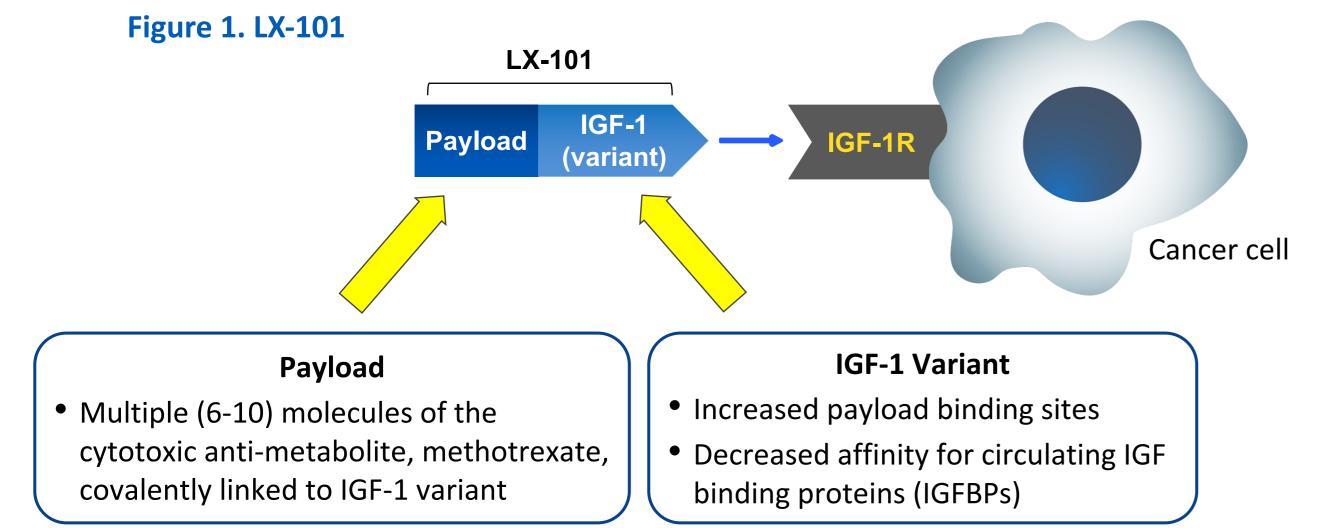


105P: LX-101, A NOVEL, CLINICAL STAGE, PAYLOAD-BEARING, IGF-1R TARGETED THERAPY, HAS POTENT PRECLINICAL ANTI-TUMOR ACTIVITY **AGAINST SARCOMAS AND OTHER IGF-RELATED CANCERS**

M. HOBERMAN¹ ¹Lirum Therapeutics, New York, USA

BACKGROUND


- The insulin-like growth factor-1 receptor (IGF-1R) pathway is well-established in a wide range of cancers, and is associated with cancer proliferation, migration, invasion, metastasis, treatment resistance, poor prognosis, and shortened survival.
- Prior attempts at targeting IGF-1R consisted of non-payload bearing naked monoclonal antibodies or small molecule tyrosine kinase inhibitors. These agents produced a range of clinical outcomes, including some partial and complete responses, but none were ultimately approved in an oncology setting.
- These previous approaches may not have been potent enough thereby allowing cancer cells to evade receptor blockade via redundant signaling pathways and other escape mechanisms.
- In contrast to these past approaches, LX-101 is a novel, next-generation, payload-bearing targeted therapy directed to IGF-1R. LX-101 consists of a proprietary IGF-1 variant coupled to a cytotoxic methotrexate (MTX) payload.
- LX-101 was previously evaluated (as 765IGF-MTX) in a Phase 1a trial of adult patients with advanced, pretreated cancers, where it was well-tolerated and demonstrated single agent activity. Neither a dose limiting toxicity (DLT), nor a maximum tolerated dose (MTD) were reached, leaving potential room for additional dose escalation and schedule optimization. Moreover, notably, while patients had some level of IGF-1R expression, the trials were not specifically designed to enrich for tumors with high IGF-1R expression and/or wellestablished ties to the IGF-1R pathway.

Herein, we tested the preclinical anti-tumor activity of LX-101 against a variety of sarcomas and other IGF-related cancers.

LX-101, A NOVEL APPROACH TO TARGETING IGF-1R

- Next generation IGF-1R-directed agent that delivers a potent payload with high precision to target cells
- Consists of an optimized variant of the IGF-1 ligand, covalently conjugated to MTX, a cytotoxic inhibitor of DNA synthesis, repair, and cellular replication that has been used to treat patients with a variety of cancers and autoimmune disease
- Designed with additional binding sites, via a proprietary N-terminal leader sequence, to allow for the conjugation of increased number of MTX molecules in an effort to enhance potency
- Targeted delivery of MTX directly to the cells of interest designed for increased precision
- The IGF-1 variant used in LX-101 designed to have reduced binding affinity to circulating serum IGF binding proteins (IGFBPs) to optimize bioavailability

I X-101 concentration (nM)							
1.25	12.5	125	1250	12500			
	-	-	-	-			

LX-101 concentration (nM)

Table 1. LX-101 Absolute IC₅₀ Summary

Indication	Cell line	Absolute IC ₅₀ (nM)	
Ewing's sarcoma	RD-ES	10	
	CADO-ES1	14	
	A673	14	
	SK-ES-1	29	
Rhabdomyosarcoma	SJCRH30 (alveolar)	23	
Adrenocortical Carcinoma	SW-13	9	
Osteosarcoma	143B	6	
	HOS	7	
	U2OS	32	
	Saos-2	>2500	

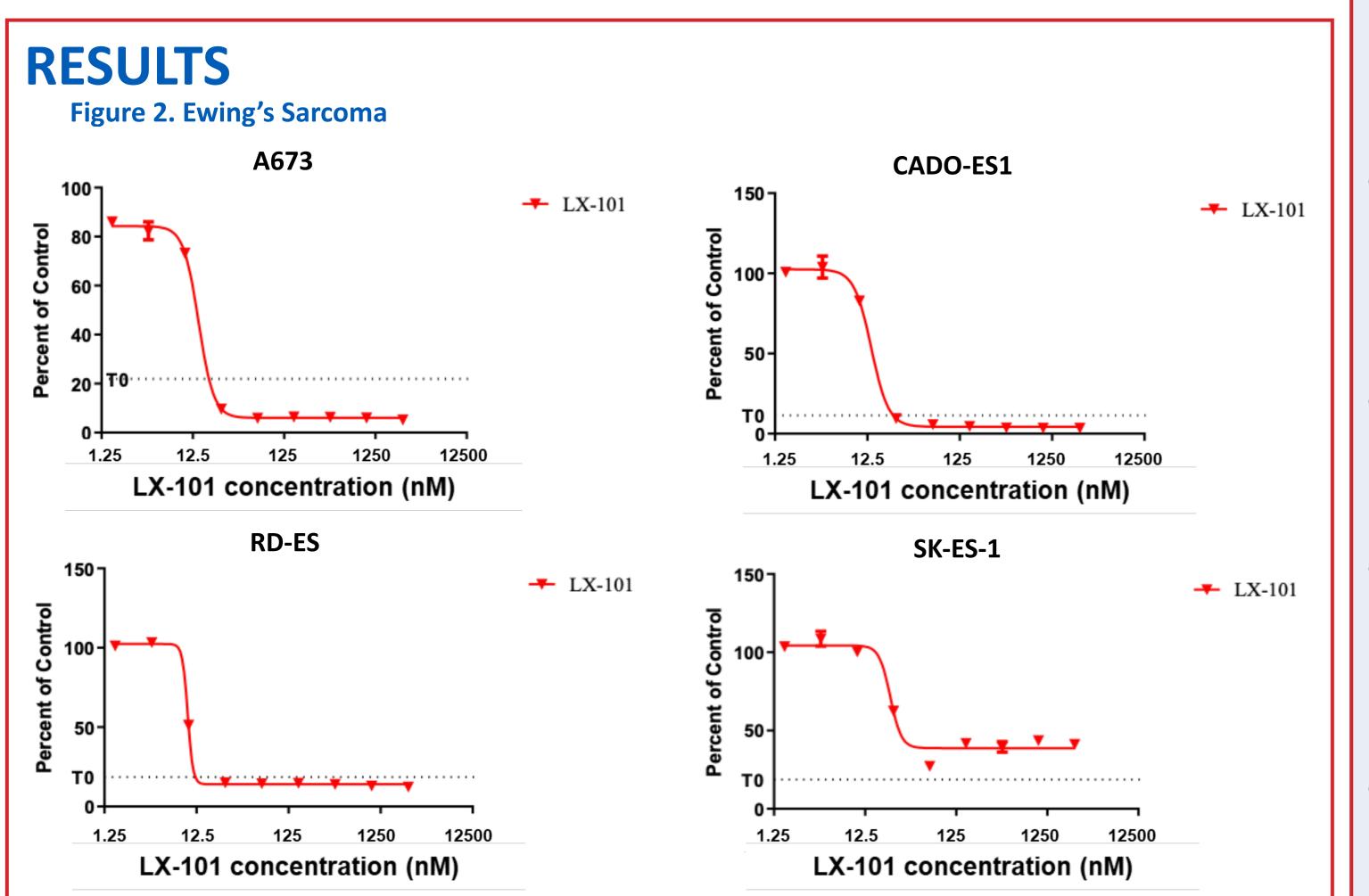

CANCERS WITH TIES TO THE IGF-1 / IGF-1R PATHWAY

Table 2. Select Cancers with IGF-1 / IGF-1R Pathway Involvement

	Cancer Type	Epigenetic and Genetic Alterations		
	Ewing's sarcoma	IGF-1R poor prognosis	EWSR1-FLI1	
	Rhabdomyosarcoma	IGF-1R and short survival	PAX3/7-FKHR/FOXO1	
	GIST	High IGF-1R in peds (WT)	NBF1-IGF1R	
	Synovial Sarcoma	IGF-1R aggressive disease	SYT-SSX1/2	
	Neuroblastoma	IGF-1R and poor outcomes		
	Osteosarcoma	IGF-1R and poor prognosis		
	Wilms Tumor	IGF-1R and poor outcomes	IGF-1R gene amplification	
	DSRCT	IGF-1R and upregulation	EWSR1-WT1	
	Adrenocortical carcinoma	IGF-2 overexpression		
+ 10%	Adenoid cystic carcinoma	IGF-2 overexpression	MYB-NF1B	
BS. bromo- ells were 10% ultured	H&N cancer, HPV(-) Bladder cancer, invasive Breast cancer, triple negative	IGF-1R associated with poor outcomes, mortality and shortened survival		
e seeded	Many cancer type subsets, including lung, breast, colorectal, prostate, ovarian, gastric, esophageal, etc.	IGF-1R over-expres poor outcome feat		

METHODS

- Cell Culture: CADO-ES1, RD-ES, and SJCRH30 cells were cultured in RPMI-1640 + fetal bovine serum (FBS). HOS and A-673 cells were cultured in DMEM + 10% FB 143B cells were cultured in MEM + 0.01 mM NEAA + 10% FBS + 0.015 mg/ml 5-2'-deoxyuridine. U2OS cells were cultured in McCoy's 5A + 10% FBS. SK-ES-1 cel cultured in McCoy's 5A + 15% FBS. Saos-2 cells were cultured in McCoy's 5A + 1 FBS. SW-13 cells were cultured in L-15 medium + 10% FBS. All cell lines were cul at 37°C and 5% CO₂, except for SW-13 cells, which were cultured in 100% air.
- In Vitro Cytotoxicity Assay: The CellTiter-Glo[®] Luminescent Cell Viability Assay (Promega) was used to assess cell viability after exposure to LX-101. Cells were in 96-well plates and incubated with LX-101 at concentrations ranging from 1.6 – 2500 nM for 4 days. The CellTiter-Glo[®] 2.0 Reagent was then added to wells according to the manufacturer's instructions, and luminescence was measured on an EnVision[®] 2104 Multilabel Plate Reader (PerkinElmer). Cisplatin was used as a positive control.
- **Data Analysis:** IC₅₀ were calculated using GraphPad PRISM software. Absolute IC50s of LX-101 derived by dividing the IC50s based on MTX content by average number of MTX groups conjugated per IGF-1 variant protein (i.e., 8), as determined by MALDI-TOF (matrix-assisted laser desorption/ionization time of flight mass spectrometry).

SUMMARY AND CONCLUSIONS

•LX-101, a clinical stage next-generation, targeted therapy directed to IGF-1R, was previously evaluated (as 765IGF-MTX) in Phase 1a trials of adult patients with advanced, pretreated cancers, where it was welltolerated and demonstrated single agent activity.

- Neither a DLT nor an MTD were reached, leaving room for possible further dose escalation and schedule optimization
- Also, an enrichment strategy was not employed which presents the opportunity for a more focused tumor-type-specific approach

• Prior IGF-1R-targeting drug candidates were non-payload-bearing naked monoclonal antibodies or small molecule tyrosine kinase inhibitors, and thus may not have addressed redundant pathways and other escape mechanisms that enable cancer cells to evade therapy

Figure 3. Rhabdomyosarcoma and Adrenocortical Carcinoma

SJCRH30 **SW-13** 150[.] 150 Control 0 Contr ъ 5 cent 50 Per ТΟ 12500 125 12.5 1250 1.25 12.5 125 12500 1.25 1250 LX-101 concentration (nM) LX-101 concentration (nM)

 In contrast, LX-101, with its novel payload-bearing construction, could provide a more potent therapeutic approach to targeting IGF-1R⁺prominent cancers than has been employed in the past

•LX-101 demonstrated potent preclinical anti-tumor activity against sarcoma and other cancer cells with well-established ties to the IGF-1R pathway, including those with oncogenic gene fusions affecting the pathway.

• Given these encouraging data, new clinical trials with LX-101 are being planned in indications with strong ties to the IGF-1R pathway, focusing on cancers mentioned in Table 2 (above)

REFERENCES

Andersson, Mattias K et al. "IGF2/IGF1R Signaling as a Therapeutic Target in MYB-Positive Adenoid Cystic Carcinomas and Other Fusion Gene-Driven Tumors." Cells vol. 8,8 913. 16 Aug. 2019, Hua, Hui et al. "Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy." Journal of hematology & oncology vol. 13,1 64. 3 Jun. 2020, Venepalli, Neeta K et al. "Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R." American journal of clinical oncology vol. 42,11 (2019), Chen, Helen X, and Elad Sharon. "IGF-1R as an anti-cancer target--trials and tribulations." Chinese journal of cancer vol. 32,5 (2013), Yuan, Jingsheng et al. "Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy." Oncology letters vol. 15,1 (2018), Larsson, O et al. "Role of insulin-like growth factor 1 receptor signalling in cancer." British journal of cancer vol. 92,12 (2005)

DISCLOSURE

M. Hoberman is an employee of Lirum Therapeutics, Inc.

Contact information: Matt Hoberman (mhoberman@lirumtx.com)